Calculus Section 7.2 Volume by Disk Method

-Find the volume of a solid of revolution using the disk method

Homework: page 453 #'s 1, 3, 7, 9, 16, 19, 24, 33

Another way to create a 3-dimensional region is by rotating a function around a line. The rotation creates circular cross-sections that combine to create the volume. The resulting solid is called the **solid of revolution**, and the line that it revolved around is called the **axis of revolution**.

The area of each circle is $A = \pi r^2$, where r is distance from the function to the axis of revolution.

2 2 21 1 11 2 2

The Disk Method

To find the volume of a solid of revolution with the disk method, use one of the following formulas:

Horizontal Axis of Revolution

Example) Using the Disk Method x-axis

Find the volume of the solid formed by revolving the region bounded by the graph of $f(x) = \sqrt{\sin x}$ and the x-axis from $[0, \pi]$ about the x-axis.

$$V = \prod_{0}^{\infty} \left(\sqrt{\sin x}\right)^{2} dx$$

Example) Using the Disk Method y-axis

Find the volume of the solid formed by revolving the region bounded by the graph of $y = x^2 + 1$ and the y-axis

$$V=\pi \int_{1}^{5} (\sqrt{y-1})^2 dy$$

$$x^{2} = y^{-1}$$

 $x = \sqrt{y^{-1}}$

Example) Revolving About a Line That is Not a Coordinate Axis

 $\sqrt{=\pi} \left(\left(1-x^{3}\right) ^{3} dx$

Find the volume of the solid formed by revolving the region bounded by $f(x) = 2 - x^2$ and g(x) = 1 about the

line y = 1.

$$r = (2-x^2)^{-1}$$
 $r = 1-x^2$

Example)

Find the volume of the solid formed by revolving the region bounded by $y = \sqrt{x+1}$, y = 3, and x = -1 about the

line
$$x = -1$$
.

$$Y = (y^2 - 1) + 1$$

$$V=\pi\int_{0}^{3}\left(y^{2}\right)^{2}dy$$

Example)

Find the volume of the solid formed by revolving the region bounded by $y = x^2$, we have the x-axis, and x = 2X= 14

about the line x = 2.

$$V = \pi \int_{0}^{4} (2 - \sqrt{3})^{2} dy$$

Example)

Find the volume of the solid formed by revolving the region bounded by $y = x^2$, y = 4, and the y-axis, about the line y = 4.

$$V = \pi \int_{0}^{3} (4-x^{2})^{2} dx$$