Calculus Section 5.3 Inverse Functions

- -Verify that one function is the inverse function of another
- -Determine whether a function has an inverse

Homework: page 343 #'s 1, 5, 7, 35-41 odd (only part a), 47, 87, 89-92

Definition of the Inverse of a Function

A function g is the inverse function of the function f if f(g(x)) = X and g(f(x)) = X

If g is the inverse of f, then f is the inverse of q.

The function g is denoted by $f^{1}(x)$.

A function does not have to have an inverse function, but if it does, the inverse function is $\frac{unigue}{}$

If a function has an inverse, then the inverse can be found by switching the x and y variables and solving for y.

Example)

Find the inverse of $f(x) = 2x^3 - 1$ and verify they are inverse using composition.

$$y = 2x^3 - 1$$

 $x = 2y^3 - 1$

Existence of an Inverse Function: The Horizontal Line Test

If any horizontal line crosses a function more than once, then the function fails the horizontal line test and does not have an inverse does not have an inverse function.

$$x^3 + x - 1$$

$$x^3-x-1$$

