Calculus Section 3.4 Concavity and the Second Derivative Test

-Determine intervals on which a function is concave upward or concave downward

-Find any points of inflection of the graph of a function

-Apply the Second Derivative test to find relative extrema of a function

Homework: page 192 #'s 1, 2, 15, 17, 24, 33, 34, 50, 77, 78

Definition of Concavity

Let f be differentiable on an open interval. The graph of f is $\underline{CONCAVE UD}$ if f is increasing on the interval and $\underline{CONCAVE down}$ if f is decreasing on the interval.

Test for Concavity

Let f be a function whose second derivative exists on an open interval I.

1) If f''(x) > 0 for all x in I, then the graph of f is concave upward in I.

2) If f''(x) < 0 for all x in I, then the graph of f is concave downward in I.

Example)

Determine the open intervals on which the graph of $f(x) = x^4 - 4x^3 + 2$ is concave upward or downward.

$$f'(x) = 4x^3 - 12x^2$$

 $f''(x) = 12x^2 - 24x$
 $0 = 12x(x-2)$

X -1 0 1 2 3 F'A + 0 - 0 +

concave up: (-00,0) U(2,00)

Definition of Points of Inflection

Let f be a function that is continuous on an open interval and let c be a point in the interval. If the graph of f at that point, then this point is a **point of inflection** of the graph of f.

Points of Inflection

If (c, f(c)) is a point of inflection of the graph of f, then either f''(c) = 0 or f'' does not exist at x = c.

Example: Finding points of inflection

Determine the points of inflection and discuss the concavity of the graph of $f(x) = x^{\frac{1}{3}}(x-5)$.

$$f(x) = x^{5/3} - 5x^{2/3}$$

$$f'(x) = \frac{5}{3}x^{3/3} - \frac{10}{3}x^{-1/3}$$

$$f''(x) = \frac{10}{9}x^{-1/3} + \frac{10}{9}x^{-4/3}$$

$$-\frac{10}{9x^{1/3}} = \frac{10}{9x^{1/3}} \text{ DNE at } x=0$$

$$-90 x^{1/3} = 90 x^{1/3}$$

$$-x^{1/3} = x^{1/3}$$

$$0 = \frac{10}{9x^{1/3}} + \frac{10}{9x^{4/3}}$$

-
$$X = 1$$
 Concave up: $(-1,0)U(0,\infty)$
 $X = -1$ concave down: $(-\infty,-1)$
Point of inflection: $X = -1$

The Second Derivative Test

Let f be a function such that f'(c) = 0 and the second derivative of f exists on an open interval containing c.

- 1) If f''(c) > 0 (concave up), then f has a <u>relative maximum</u> at (c, f(c)). 2) If f''(c) < 0 (concave down), then f has a <u>relative minimum</u> at (c, f(c)).
- 3) If f''(c) = 0, then the lest is inconclusive. It tells you NOTHING. You have to use the First Derivative Test instead. This does not mean that there is no max/min, the test just doesn't work for that function.

Example)

Use a tangent line at x = 1 to approximate f(1.1) for the function $f(x) = 3x^2 + 2$. Tell whether the function is an overestimate or an underestimate. Justify your answer.

$$f'(x)=6x$$

 $f'(1)=6$
 $y=6(1)=5$
 $y=6(1)=5$
 $y=6(1)=5$
 $y=6(1)+5$
 $y=5.6$
 $f(1)=5$

$$f''(x)=6$$

inc/concave up inc/concave down

 $f(1.1) \approx 5.6$ is an

underestimate overestimate overestimate

 $f'''(x) > 0$

underestimate overestimate

underestimate overestimate