Calculus Section 3.4 Concavity and the Second Derivative Test

-Determine intervals on which a function is concave upward or concave downward

-Find any points of inflection of the graph of a function Homework: page 192 #'s 1, 2, 15,
-Apply the Second Derivative test to find relative extrema of a function 17, 24, 33, 34,50, 77, 78

Definition of Concavity
Let f be differentiable on an open interval. The graph of fis coneave U\P if f'is increasing on
the interval and _Con( Ve down if f'is decreasing on the interval.

o fting Jess
N doggs - getting =

- Pt moe L p G
less postve, mowe
/ r\c‘jal'i\l&

— / 2 N\

Test for Concavity
Let f be a function whose second derivative exists on an open interval 1.
1) If f"(x) > Ofor all xin 1, then the graph of f is concave upward in L.

2) If f"(x)<0for all xin I, then the graph of f is concave downward in 1.

Example)
Determine the open intervals on which the graph of f(x) = x* — 4x3 + 2 is concave upward or downward.
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I Definition of Points of Inflection
Let f be a function that is continuous on an open interval and let ¢ be a point in the interval. If the graph of f
demﬂas concaV i{}‘f at that point, then this point is a point of inflection of the graph of f.




Points of Inflection
If {c, f(c)) is a point of inflection of the graph of f, then either f"(c)=0o0r f "does not exist at x=c¢.

Example: Finding points of inflection

Determine the points of inflection and discuss the concavity of the graph of f(x) = xg(x - 5).
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The Second Derivative Test
Let f be a function such that f'(c) =0 and the second derivative of f exists on an open interval containing c.

1) If f"(c) > 0 {concave up), then fhas a relative maximum at (c, flc)).
2) If f£"(c) < O{concave down), then fhas a celative minimum at (c, fic)).
3)If /"(c)=0,then {he +C st duwsie |t tells you NOTHING. You have to use the First Derivative

Test instead. This does not mean that there is no max/min, the test just doesn’t work for that function.

Example)

Use a tangent line at x = 1 to approximate f{1.1) for the function f(x) = 3x? + 2. Tell whether the function is an
overestimate or an underestimate. Justify your answer.
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