Calculus Section 3.3 The First Derivative Test

-Determine intervals on which a function is increasing or decreasing

Homework: Page 186 #'s 9 - 14, 57 - 60.

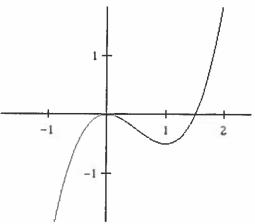
91 - 96

-Apply the First Derivative Test to find relative extrema on a function

Increasing and Decreasing Functions

Let f be a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

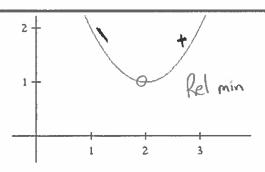
- 1) If f'(x) > O for all x in (a, b), then f is increasing on [a, b].
- 2) If f'(x) < D for all x in (a, b), then f is decreasing on [a, b].
- for all x in (a, b), then f is constant on [a, b].

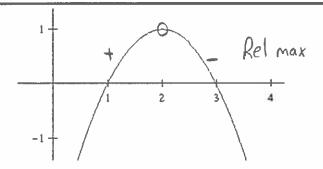

Steps for Finding Increasing/Decreasing/Constant

- 1) Find critical numbers
- 2) Write intervals between those critical numbers
- 3) Substitute a value from each interval into f'(x) to test it
- 4) Indicate how the function behaves from the rules above

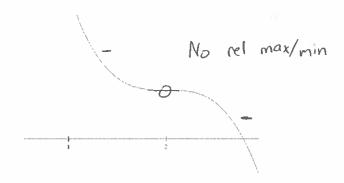
Example)

Find the open intervals on which $f(x) = x^3 - \frac{3}{2}x^2$ is increasing or decreasing.


$$f'(x) = 3x^2 - 3x$$




The First Derivative Test


Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then f(c) can be classified as follows:

- 1) If f'(x) changes from negative to positive at c, then f has a relative minimum at (c, f(c)).
- 2) If f'(x) changes from positive to negative at c, then f has a <u>relative</u> maximum at (c, f(c)).
- 3) If f'(x) is positive on both sides of c or negative on both sides of c, then f(c) is neither a relative maximum nor a relative minimum.

Examples)

Find the relative extrema and inc./dec. intervals of

$$f(x) = \frac{1}{2}x - \sin x$$
 on [0, 2π].

$$f'(x) = \frac{1}{2} - \cos x$$

Find the relative extrema and inc./dec. intervals of

$$f(x) = \frac{x^4 + 1}{x^2} = x^2 + \frac{1}{x^2} = x^2 + \frac{1}{x^2}$$

$$f(x) = 2x - 2x^{-3}$$

$$f(x) = 2x - \frac{2}{x^3}$$
 DNE at x=0

$$0 = 2x - \frac{2}{x^3}$$

$$\frac{2}{x^3} = 2x$$